Ring-Shaped Polyoxometalate Built by {Mn <sub>4</sub> PW <sub>9</sub> } and PO <sub>4</sub> Units for Efficient Visible-Light-Driven Hydrogen Evolution
نویسندگان
چکیده
Open AccessCCS ChemistryCOMMUNICATION1 Aug 2021Ring-Shaped Polyoxometalate Built by {Mn4PW9} and PO4 Units for Efficient Visible-Light-Driven Hydrogen Evolution Hai-Lou Li, Mo Zhang, Chen Lian, Zhong-Ling Lang, Hongjin Lv Guo-Yu Yang Li MOE Key Laboratory of Cluster Science, School Chemistry Chemical Engineering, Beijing Institute Technology, 102488 Google Scholar More articles this author , Zhang Lian Lang *Corresponding authors: E-mail Address: [email protected] College Chemistry, Northeast Normal University, Changchun, Jilin 130024 https://doi.org/10.31635/ccschem.020.202000403 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd to favoritesTrack Citations ShareFacebookTwitterLinked InEmail A novel mixed-valence, ring-shaped multinuclear Mn-containing polyoxometalate, [H2N(CH3)2]15NaH8-[MnIII3MnIV(?3-O)3(OAc)PO4(B-?-PW9O34)]4·36H2O ( 1) was made systematically characterized using various spectroscopic computational techniques. Its polyoxoanion can be described as a tetramer four [MnIII3MnIV(?3-O)3(OAc)(B-?-PW9O34)]3? ({MnIII3MnIV(PW9)}) clusters linkers. Significantly, structurally new complex 1 efficiently catalyze hydrogen evolution with 23 ?mol H2 gas after 12 h visible-light irradiation three-component system. We propose possible catalytic hydrogen-evolving mechanism based on both experimental results density functional theory (DFT) calculations. Download figure PowerPoint Introduction Polyoxometalates (POMs) have attracted considerable research interest due their structural diversity potential applications in medicine, catalysis, materials science, photochemistry, molecular magnetism, so forth.1–7 The versatile lacunary POM fragments generated removing one or more skeletal MO6 groups serve multidentate O-donor inorganic ligands construct mono- transition-metal-substituted polyoxometalates (TMSPs).8–15 Currently, the design preparation high-nuclearity TMSPs remain most interesting topics synthetic chemistry. To date, been such [H56Fe28P8W48O248]28?,16 [{Co4(OH)3PO4}4(PW9O34)4]28?,17 [Cu20Cl(OH)2(H2O)12(P8W48O184)]25?,18 [H6Ni20P4W34(OH)4O136(enMe)8(H2O)6]6?,19 [{Ni6(Tris)(en)3(BTC)1.5(PW9O34)}8]36?,1 [Zr24O22(OH)10(H2O)2(W2O10H)2(GeW9O34)4(GeW8O31)2]32?.11 Among categories TMSPs, assembly POMs (Mn-POMs) has continuously developed into intriguing subjects considering extraordinary performance field magnetism recently photocatalysis.8,20 Until now, number Mn-POMs different vacant are well documented; however, there far fewer examples bearing than 10 manganese atoms. Representative these structurally, magnetically, catalytically include [MnIV2MnIII6MnII4(?3-O)6(?-OH)4(H2O)2(CO3)6(SiW6O26)2]18?,21 [MnIII13MnIIO12(PO4)4(PW9O34)4]31?,22 [{MnIII3MnIV4O4(OH)2(OH2)}2(W6O22)(H2W8O32)2(H4W13O46)2]26?,23 [MnIII10MnII6O6(OH)6(PO4)4(SiW9O34)4]28?, [MnIII4MnII12(OH)12PO4)4(SiW9O34)4]28?,24 [MnII19(OH)12(SiW10O37)6]28?,25 [MnIII20(OH)8(H2O)8(O3P(CH2)6PO3)6(A-PW9O34)8]44?,26 [(P8W48O184){(P2WIII14Mn4O60)(P2W15MnIII3O58)2}4]144?,27 [{MnIV24MnIII12O28(H2O)23}2(W24O120)2]40?28 Supporting Information Table S1). Therefore, construction remains an explore. In addition syntheses Mn-POMs, studies properties attract tremendous attention, especially renewable energy exploration.29 containing {Mn4O4} cubane moieties investigated excellent candidates photocatalysis, they potentially essential role exploration clean sources. Literature reports show that moiety may work model oxygen-evolving center, {Mn4O5Ca}, natural photosystem II; its atomic structure solved advanced crystallographic technique.29–32 However, case used catalyzing water oxidation reactions under chemical photochemical conditions,33–36 but little reported proton reduction generate fuel.37,38 Herein, we report tetramer, [H2N(CH3)2]15NaH8[MnIII3MnIV(?3-O)3(OAc)(PO4)(B-?-PW9O34)]4·36H2O 1), {B-?-PW9O34}-stabilized connected linkers explore property visible-light-driven production. Results Discussion Black strip crystal hydrothermally combining Na9[A-PW9O34]·7H2O, Na2CO3, MnCl2·4H2O, [H2N(CH3)2]Cl, KMnO4 molar ratio 1.00?3.97?17.25?20.88?2.71. worked source high-valence MnIV leading formation (experimental details Information; Figures S1–S4). Parallel experiments revealed presence [H2N(CH3)2]Cl during process is vitally important producing target cluster 1. absence replacement other ammonium salts (e.g., N(CH3)4Br, N(C4H9)4Br, etc.) does not yield final product. Single-crystal X-ray diffraction shows crystallizes monoclinic space group C2/c S2). contains unique tetrameric [MnIII3MnIV(?3-O)3(OAc)(PO4)(B-?-PW9O34)]424? 1a), Na+, 15[H2N(CH3)2]+, 36H2O. Bond valence sum (BVS) calculations reveal all W P atoms 1a +6 +5 states S3), respectively.39 BVS values Mn1–Mn8 3.801, 3.222, 3.142, 3.211, 3.146, 3.249, 3.779, 3.179, respectively, suggesting Mn2–Mn6 Mn8 +3 states, whereas Mn1 Mn7 +4 states. Moreover, Mn centers were also photoelectron spectroscopy (XPS), which integrated areas MnIII approximately 1?3 Figure S4). XPS consistent calculations, each centers.40 (Figure 1b) ring shape {MnIII3MnIV(PW9)} subunits 1a). Such connection acting pure ?2-bridging units rare distinctive from previous where participation usually stabilize high nuclear cores structure.41–47 Particularly, tetrahedral [B-?-PW9O34]9? ({PW9}) 2d) situ isomerization [A-?-PW9O34]9? precursor 2c) hydrothermal reaction. Each subunit composed typical [MnIII3MnIV(?3-O)3(OAc)]6+ ({Mn4}) 2a) anchored trivacant Keggin {PW9} unit via six ?-O ?4-O 1; S5a S5b). | (a) Combined polyhedral ball-and-stick representation {MnIII3MnIV(?3-O3)(OAc)(B-?-PW9O34)} groups. (b) 1a. Color codes atoms: WO6, red; PO4, purple; MnIIIO6, yellow; MnIVO6, orange; C, black. 2 {MnIII3MnIV(?3-O3)(OAc)} cluster. {MnIII3MnIV(?3-O3)(OAc)(PO4)}4 (c) [A-?-PW9O34]9– precursor. (d) [B-?-PW9O34]9– (e) A: –x, y, 0.5–z. P/PO4, MnIII, MnIV, O, {Mn4} cubane, exhibit six-coordinated octahedral geometry [MnIII?O: 1.883(11)?2.287(10) Å MnIV?O: 1.896(9)?2.012(8) Å]; occupy vertexes simplified tetrahedron MnIII?MnIII MnIII?MnIV distances 3.180?3.255 2.828?2.969 Å, respectively S5c). acts exclusively ?2-linker bridging two adjacent 2b). best our knowledge, represents first example linker chemistry.48 Alternatively, perceived [MnIII12MnIV4(?3-O)12 (OAc)4P4O16]12+ ({Mn16P4}) surrounded evenly-distributed 24 ?2-O 4 2e). {Mn16P4} ring, connects cubanes O 1b, 2b, 2e; S6a S6b), node additionally stabilized OAc– apart coordinating units. Interestingly, 16-membered (dimensions: 7.8 × Å2) formed (Mn1, Mn7, Mn1A, Mn7A), P, 8 S6c). Additionally, packing viewed along b-axis S7a) three-dimensional S7b), arranged –AAA– mode a-, b-, c-axis. activity examined well-established system; amount produced quantified chromatography TCD (Thermal Conductivity Detector).49 Photolysis deaerated solution catalyst (20 ?mol/L), [Ir(ppy)2(dtbbpy)]+ (0.2 mmol/L), triethanolamine (TEOA) (0.25 mol/L), H2O (2 mol/L) 6 mL CH3CN/DMF (1?3 v/v) blue light-emitting diode (LED) (? = 450 nm, 45 mW/cm2) at 15 degC; 3a); concomitant observed indicated color change yellow green S8 S9). No detected addition, cyclic voltammograms TBA+ salt showed quasireversible redox waves range –1.5 1.5 V versus SCE. positive domain MnIV/III MnIII/II peaks 1.14 0.78 SCE, respectively. When further negative domain, CV W-based reductions S10a). Addition trifluoroacetic acid leads substantial current enhancement, indicating reduced S10b). Upon exposure nm visible light, increases linearly time, while no dark. After irradiation, obtained, corresponding turnover (TON) ?192, highest value, among known catalyzed H2-evolving systems.37,38 encourages us photolysis conditions. Control any component (catalyst 1, TEOA, [Ir(ppy)2(dtbbpy)]+, H2O) yields negligible 3a). Additional control fragment 16 equivalents MnCl2 result much lower production (?4 h, respectively). Furthermore, varied concentration TEOA otherwise identical Both increasing (from 0.1 0.4 mmol/L) 0.05 0.25 led increased S11a S11b). Notably, constant when varying 20 ?mol/L, then decreased upon 30 ?mol/L S11c). phenomenon might attributed shielding photons absorbed photosensitizer because absorb light. experiment “mercury poison” test almost effect photocatalytic S12), form nickel nanoparticles process. stability reaction verified comparing IR spectra isolated before photocatalysis S13), good agreement between confirmed did 3 Photocatalytic decay curves (black curve), + 1(50 ?mol/L) (green (blue curve). red fits single exponential decay. (c e) emission function added TEOA. (d f) Stern–Volmer plots quenching [Ir(ppy)2(dtbbpy)]+* TEOA; calculated rate constants 3.1 1011 (mol/L)–1 s–1 1.0 107 s–1, Previous excited state either reductively quenched electron donor oxidatively acceptor.50–52 system, time-resolved luminescence techniques utilized characterize mechanism. Experimental [Ir(ppy)2(dtbbpy)]*+ accelerated (Figures 3b, 3c, 3e). (SV) plot data reveals apparent 3d 3f). Exponential fitting kinetics dye only lifetimes 96, 81, 50 ns, These indicate oxidative reductive exist systems, literature reports.53–55 Based above information, light-induced proposed Scheme S1. Density carried out B3LYP/PCM(H2O)/[6-31G(d,p)/LANL2DZ(Mn&W)] level driving force toward (HER).56–61 Given {MnIII3MnIV(?3-O)3(OAc)(B-?-PW9O34)} basic building block whole compound, herein selected [MnIII3MnIV(?3-O)3(OAc)(PO4)2(B-?-PW9O34)]9– (Mn4O3; S14) working 4a). An S 9/2 ground set calculation consulting reports, allocated ?-spin 3.74, 3.68, 3.85|e| three (Mn2/3/4 labeled S15), center (Mn1) 2.64|e| ?-spin distribution.23 top singly unoccupied MOs mostly core orbitals S16), photo-reduction would preferably occur sites. As Hinnemann et al.,62 HER should able trap protons desorb H2, thus requiring H adsorbed active site ?GH* close zero. electrostatic (MEP; S17) analysis distribution partial charges ?3-O Mn4O3 core, captured it. contrast, release OAc ligand highly exothermic, resulting attack five-coordinated obtain Mn-H intermediate. hypothesized occurs full oxide [MnIII3MnIV(?3-O)3(PO4)2(B-?-PW9O34)]8–; largely limited extremely adsorption energy. identify real 4b), computed ?Eads Mn4O3. ability consistently favorable Mn. Conversely, strong 1e- 2e-Mn4O3 makes desorption challenge. reaches three-electron reduction, approaches zero giving balance adsorption. such, three-electron-reduced represent evolution, voltammetry S8–S10). very likely adsorbing initially subsequently transferring neighboring Mn-H. Computational sites (S1 energies (H-S1) (H-S2) dependent {MnIII3MnIV(?3-O)3(OAc)(PO4)2(B-?-PW9O34)}9–. Conclusion Mn-substituted method. Four ?2-PO4 act connectors bridge units, occurance chemistry exhibits activity. This enriches family paves way developing application solar conversion. available. Conflict Interest authors declare conflicts interests. Acknowledgments supported National Natural Science Foundation China (NSFC; nos. 21831001, 21571016, 91122028, 20725101, 21871025). References Zheng S. T.; J.; X. X.; Fang W. H.; G. Y.Cubic Polyoxometalate–Organic Molecular Cage.J. Am. Chem. Soc.2010, 132, 15102–15103. 2. Wang Y.-J.; Wu S.-Y.; Sun Y.-Q.; X.-X.; S.-T.Octahedron-Shaped Three-Shell Ln14-Substituted Polyoxotungstogermanates Encapsulating W4O15 Cluster: Luminescence Frequency Dependent Magnetic Properties.Chem. Commun.2019, 55, 2857–2860. 3. Ma P. Hu F.; J. P.; Niu Y.Carboxylate Covalently Modified Polyoxometalates: From Synthesis, Structural Diversity Applications.Coord. Rev.2019, 378, 281–309. 4. Bassil B. S.; Dickman M. Römer I.; von der Kammer B.; Kortz U.The Tungstogermanate [Ce20Ge10W100O376(OH)4(H2O)30]56–: Containing Cerium(III) Atoms.Angew. Int. Ed.2007, 46, 6192–6195. 5. Oms O.; Dolbecq A.; Mialane P.Diversity Structures Properties 3d-Incorporating Polyoxotungstates.Chem. Soc. Rev.2012, 41, 7497–7536. 6. Long D.-L.; Tsunashima R.; Cronin L.Polyoxometalates: Building Blocks Functional Nanoscale Systems.Angew. Ed.2010, 49, 1736–1758. 7. H. L.; Liu Y. L. Zhao W.; Y.Structural Transformation Dimerization Tetramerization Serine-Decorated Rare-Earth-Incorporated Arsenotungstates Induced Usage Rare-Earth Salts.Chem. Eur. J.2017, 23, 2673–2689. 8. J.-W.; C.-M.; S.-T.; G.-Y.Combination Lacunary High-Nuclear Transition Metal Clusters Under Hydrothermal Conditions: IX. Series Novel Polyoxotungstates Sandwiched Octa–Copper Clusters.Chem. J.2008, 14, 9223–9239. 9. Heine Müller-Buschbaum K.Engineering Metal-Based Coordination Polymers Metal–Organic Frameworks.Chem. Rev.2013, 42, 9232–9242. 10. Y.Recent Advances Polyoxometalate-Catalyzed Reactions.Chem. Rev.2015, 115, 4893–4962. 11. Huang Cheng Y.Synergistic Combination Multi-ZrIV Cations Germanotungstates Leading Gigantic Zr24-Cluster-Substituted Polyoxometalate.J. Soc.2014, 136, 7637–7642. 12. Y.-L.; Qi Yu Jin S.-T.{Nb288O768(OH)48(CO3)12}: Macromolecular Close 300 Niobium Ed.2018, 57, 8572–8576. 13. H.-L.; C.; Yin D.-P.; Jia Z.-Y.; G.-Y.A New Hepta-Nuclear Ti-Oxo-Cluster-Substituted Tungstoantimonate Catalytic Oxidation Thioethers.Cryst. Growth Des.2019, 19, 376–380. 14. Between First (3,6)-Connected Framework Constructed Sandwich-Type {Cu8} Cluster.Chem. Commun.2008, 5, 570–572. 15. Octa-Mn-Substituted Poly(Polyoxotungstate).Dalton Trans.2019, 48, 14306–14311. 16. Godin Y.-G.; Vaissermann Ruhlmann Verdaguer M.; Gouzerh P.Coordination Hexavacant Tungstophosphate [H2P2W12O48]12– FeIII Ions: Towards Original Increasing Size Complexity.Angew. Ed.2005, 44, 3072–3075. 17. Ibrahim Lan Y.; Xiang Suchopar Powell A. K.; U.Hexadecacobalt(II)-Haltigem Polyoxometallate-Based Single-Molecule Magnet.Angew. Ed.2011, 50, 4708–4711. 18. Mal Wheel-Shaped Cu20 [Cu20Cl(OH)24(H2O)12(P8W48O184)]25– Ion.Angew. 3777–3780. 19. Modesto Clemente-Juan Yuan D.-Q.; Y.Poly (Polyoxotungstate) s Nickel Centers: Nanoclusters One-Dimensional Chains.Angew. Ed.2009, 7176–7179. 20. Xue Pan B.-F.; G.-Y.; H.-S.Diverse Ligand-Functionalized Mixed-Valent Hexamanganese Silicotungstates Magnet Behavior.Chem. J.2016, 22, 12322–12331. 21. Z.-M.; Yao H.-H.; Y.-H.; Rouzières Clérac Su E.-B.A Polyoxometalate-Based {MnIV2MnIII6MnII4} Core.Chem. Commun.2013, 2515–2517. 22. Q.; G.; E. Z. R.Mixed-Valent {Mn14} Aggregate Encapsulated Inorganic Shell: [MnIII13MnIIO12(PO4)4 (PW9O34)4]31.Inorg. Chem.2009, 1606–1612. 23. Luban M.{Mn14W48} Aggregate: Perspective Isopolyanions Ligands.Chem. Commun.2011, 47, 3066–3068. 24. Haider Carey Viet N.; Xing Ayass Miñambres Keita Mereacre V.; Balinski N’Diaye Küpper H.-Y.; Stimming U.; U.Mixed-Valent Mn16-Containing Heteropolyanions: Tuning State Associated Physicochemical Properties.Inorg. Chem.2016, 2755–2764. 25. Al-Oweini Asano Z.; van Tol Dalal N. Choi K. Biboum R. Nadjo U.A Planar {Mn19(OH)12}26+ Unit Incorporated 60-Tungsto-6-Silicate Polyanion.Angew. 5961–5964. 26. Tang X.Chain Length Effect Functionalization ?,?-Alkyldiphosphonates.Chem. 6547–6550. 27. Kögerler Furukawa Speldrich M.Molecular Core–Shell Polyoxometalate.Angew. 5212–5216. 28. Shi Zeng Q. D.; D. Y.A High-Nuclearity Isopolyoxotungstate Manganese One-Pot Synthesis Step-by-Step Assembly.Chem. Commun.2018, 54, 5458–5461. 29. Geletii Vickers Zhu Luo Song Musaev Hill C. L.Polyoxometalate Water Catalysts Production Green Fuel.Chem. 7572–7589. 30. Z.-J.; X.-L.; Qin W.-L.; E.-B. Polyoxometalate-Assisted Transition-Metal Cubane Artificial Mimics Oxygen-Evolving Center Photosystem II.Coord. Rev.2016, 313, 94–110. 31. Zouni Witt H.-T.; Kern Fromme Krauss Saenger Orth P.Crystal Structure II Synechococcus Elongatus 3.8 Resolution.Nature2001, 409, 739–743. 32. Suga Akita Hirata Ueno Murakami Nakajima Shimizu Yamashita Yamamoto Ago Shen J.-R.Native 1.95 Resolution Viewed Femtosecond X-Ray Pulses.Nature2015, 517, 99–103. 33. Dismukes Brimblecombe Felton Pryadun Sheats E.; Spiccia Swiegers F.Development Bioinspired Mn4O4–Cubane Catalysts: Lessons Photosynthesis.Acc. Res.2009, 1935–1943. 34. Sartorel Natali Berardi Scandola Bonchio M.Photocatalytic MnIII3MnIVO3 Oxo Core Center.Angew. Ed.2014, 53, 11182–11185. 35. Yan Z.-H.; Kong X.-J.Recent First-Row Splitting.ChemPhotoChem2020, 4, 157–167. 36. Schwarz Forster Goetz Yücel Berger Jacob Streb C.Visible-Light-Driven Vanadium Oxide Cluster.Angew. Ed.2016, 6329–6333. 37. W.-C.; Shao K.-Z.; E.-B.Assembly Mn-Containing Unprecedented Selenotungstate Activity.Cryst. Des.2016, 16, 2481–2486. 38. Bacsa L.Visible-Light-Driven Using Noble-Metal-Free Catalyst.J. Catal.2013, 307, 48–54. 39. Brown I. Altermatt D.Bond-Valence Parameters Obtained Systematic Analysis Crystal Database.Acta Cryst.1985, B41, 244–247. 40. Tan Klabunde Sherwood A.XPS Studies Solvated Atom Dispersed (SMAD) Catalysts. Evidence Layered Cobalt-Manganese Particles Alumina Silica.J. Soc.1991, 113, 855–861. 41. Conditions. Tetrameric [{FeIIFeIII12(?3-OH)12(?4-PO4)4}(B-?-PW9O34)4]22–.Inorg. Chem.2007, 10944–10946. 42. Han X.-B.; H.-Q.; Lu E.-B.Polyoxometalate-Based Visible Light-Driven Catalysts.J. Soc.2015, 137, 5486–5493. 43. Tetra-Zr(IV)-Substituted Polyoxotungstate Aggregate.Dalton Trans.2018, 14017–14024. 44. Oliveira U.Synthesis, Magnetism, Electrochemistry Ni14- Ni5-Containing Heteropolytungstates [Ni14 (OH)6(H2O)10(HPO4)4(P2W15O56)4]34– [Ni5(OH)4(H2O)4(?-GeW9O34)(?-GeW8O30(OH))]13.Inorg. Chem.2013, 52, 8399–8408. 45. Lin You Cobalt–Phosphate Oxidation.J. 5359–5366. 46. Singh Drew P.Unprecedented {Fe14}/{Fe10} Polyoxotungstate-Based Activity: Structure, Electrochemistry.Chem. 10983–10989. 47. Molina Miras L.Assembly Two Tetrahedral Clusters: [FeIII13P8W60O227(OH)15(H2O)2]30– [FeIII13P8W60O224(OH)12(PO4)4]33–.Dalton Trans.2014, 43, 5190–5199. 48. G.-Y.Trigonal Pyramidal {AsO2(OH)} Bridging Tetranuclear Aggregates.Inorg. 3881–3893. 49. Guo Lauinger T. L.A Noble-Metal-Free, Tetra-Nickel Catalyst Evolution.J. 14015–14018. 50. Jacques P.-A.; Chavarot-Kerlidou Fontecave Artero V.Phosphine Cobalt Diimine–Dioxime Increases Stability During Production.Inorg. Chem.2012, 51, 2115–2120. 51. Paille Boulmier Bensaid Ha-Thi M.-H.; Tran T.-T.; Pino Marrot Rivière Hendon Gomez-Mingot Mellot-Draznieks Dolbecqa P.An {Ni14SiW9} Hybrid High Activity.Chem. 4166–4169. 52. Hoffman Z.Reductive Quenching Excited States Ruthenium (II) Complexes 2,2?-Bipyridine, 2,2?-Bipyrazine, 2,2?-Bipyrimidine Ligands.J. Phys. Chem.1994, 98, 11719–11726. 53. Bokarev Hollmann Pazidis Neubauer Radnik Kühn Lochbrunner Junge Beller Brückner A.Spin Distribution Electron Transfer Triethylamine [Ir(ppy)2(bpy)]+ Photosensitizer Reduction.Phys. Phys.2014, 4789–4796. 54. Prier Rankic MacMillan C.Visible Light Photoredox Catalysis Complexes: Applications Organic Synthesis.Chem. 5322–5363. 55. Gao Lee L.Syntheses, Characterization, Di- Trinickel Polyoxometalates.Inorg. 461–466. 56. Frisch Trucks Schlegel B.Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2013. 57. Becke D.Density-Functional Thermochemistry. III. Role Exact Exchange.J. Phys.1993, 5648–5652. 58. Parr G.Development Colle Salvetti Correlation Energy Formula Density.Phys. Rev. B1988, 37, 785–789. 59. Hay Wadt R.Ab Initio Effective Potentials Atoms Sc Hg.J. Phys.1985, 82, 270–283. 60. J.Ab Calculations. Main Group Elements Na Bi.J. 284–298. 61. Tomasi Mennucci Cammi R.Quantum Mechanical Continuum Solvation Models.Chem. Rev.2005, 105, 2999–3093. 62. Moses Bonde Jørgensen Nielsen Horch Chorkendorff Nørskov K.Biomimetic Evolution: MoS2Nanoparticles Soc.2005, 127, 5308–5309. articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 3Issue 8Page: 2095-2103Supporting Copyright & Permissions© 2020 Chinese SocietyKeywordshydrogen evolutionpolyoxometalatesvisible-light irradiationpolynuclear clustersAcknowledgmentsThis Downloaded 1,013 times Loading ...
منابع مشابه
Tunable organic photocatalysts for visible-light-driven hydrogen evolution.
Photocatalytic hydrogen production from water offers an abundant, clean fuel source, but it is challenging to produce photocatalysts that use the solar spectrum effectively. Many hydrogen-evolving photocatalysts are active in the ultraviolet range, but ultraviolet light accounts for only 3% of the energy available in the solar spectrum at ground level. Solid-state crystalline photocatalysts hav...
متن کاملTriazine-based carbon nitrides for visible-light-driven hydrogen evolution.
A new dimension: The doping of amorphous poly(triazine imide) (PTI) through ionothermal copolymerization of dicyandiamide with 4-amino-2,6-dihydroxypyrimidine (4AP) results in triazine-based carbon nitrides with increased photoactivity for water splitting compared to crystalline poly(triazine imide) (PTI/Li(+)Cl(-), see picture) and melon-type carbon nitrides. This family of carbon nitride semi...
متن کاملDye-sensitized polyoxometalate for visible-light-driven photoelectrochemical cells.
A simple and facile one-step method for the synthesis of an organic dye-functionalized polyoxometalate (POM) hybrid with visible-light photo-response was reported. The POM hybrid was fully characterized via single crystal XRD, powder XRD, FTIR and elemental analysis. The reaction of the organic dye with inorganic salts gave the dye-functionalized POM (MoBB3), in which the POM cluster was formed...
متن کاملEfficient visible light-driven water oxidation catalyzed by an all-inorganic copper-containing polyoxometalate.
[Cu5(OH)4(H2O)2(A-α-SiW9O33)2](10-) (1) was tested as the first copper-containing polyoxometalate catalyst for O2 production via visible light-driven water oxidation. Multiple experiments confirm that 1 is an active and dominant catalyst during water oxidation.
متن کاملVisible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts
Linear poly(p-phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co-polymer has a UV photocatalytic activity that rivals TiO2, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CCS Chemistry
سال: 2021
ISSN: ['2096-5745']
DOI: https://doi.org/10.31635/ccschem.020.202000403